Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 575, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664260

ABSTRACT

BACKGROUND: Selection on or reticulate evolution of mtDNA is documented in various mammalian taxa and could lead to misleading phylogenetic conclusions if not recognized. We sequenced the MT-ND6 gene of four sympatric Mustelid species of the genus Mustela from some central European populations. We hypothesised positive selection on MT-ND6, given its functional importance and the different body sizes and life histories of the species, even though climatic differences may be unimportant for adaptation in sympatry. METHODS AND RESULTS: MT-ND6 genes were sequenced in 187 sympatric specimens of weasels, Mustela nivalis, stoats, M. erminea, polecats, M. putorius, and steppe polecats, M. eversmannii, from eastern Austria and of fourteen allopatric polecats from eastern-central Germany. Median joining networks, neighbour joining and maximum likelihood analyses as well as Bayesian inference grouped all species according to earlier published phylogenetic models. However, polecats and steppe polecats, two very closely related species, shared the same two haplotypes. We found only negative selection within the Mustela sequences, including 131 downloaded ones covering thirteen species. Positive selection was observed on three MT-ND6 codons of other mustelid genera retrieved from GenBank. CONCLUSIONS: Negative selection for MT-ND6 within the genus Mustela suggests absence of both environmental and species-specific effects of cellular energy metabolism despite large species-specific differences in body size. The presently found shared polymorphism in European polecats and steppe polecats may result from ancestral polymorphism before speciation and historical or recent introgressive hybridization; it may indicate mtDNA capture of steppe polecats by M. putorius in Europe.


Subject(s)
Evolution, Molecular , Mustelidae , NADH Dehydrogenase , Phylogeny , Sympatry , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Europe , Genetics, Population , Haplotypes/genetics , Mustelidae/genetics , NADH Dehydrogenase/genetics , Selection, Genetic , Sympatry/genetics
2.
BMC Ecol Evol ; 21(1): 100, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34039261

ABSTRACT

BACKGROUND: Animal mitochondria play a central role in energy production in the cells through the oxidative phosphorylation (OXPHOS) pathway. Recent studies of selection on different mitochondrial OXPHOS genes have revealed the adaptive implications of amino acid changes in these subunits. In hares, climatic variation and/or introgression were suggested to be at the origin of such adaptation. Here we looked for evidence of positive selection in three mitochondrial OXPHOS genes, using tests of selection, protein structure modelling and effects of amino acid substitutions on the protein function and stability. We also used statistical models to test for climate and introgression effects on sites under positive selection. RESULTS: Our results revealed seven sites under positive selection in ND4 and three sites in Cytb. However, no sites under positive selection were observed in the COX1 gene. All three subunits presented a high number of codons under negative selection. Sites under positive selection were mapped on the tridimensional structure of the predicted models for the respective mitochondrial subunit. Of the ten amino acid replacements inferred to have evolved under positive selection for both subunits, six were located in the transmembrane domain. On the other hand, three codons were identified as sites lining proton translocation channels. Furthermore, four codons were identified as destabilizing with a significant variation of Δ vibrational entropy energy between wild and mutant type. Moreover, our PROVEAN analysis suggested that among all positively selected sites two fixed amino acid replacements altered the protein functioning. Our statistical models indicated significant effects of climate on the presence of ND4 and Cytb protein variants, but no effect by trans-specific mitochondrial DNA introgression, which is not uncommon in a number of hare species. CONCLUSIONS: Positive selection was observed in several codons in two OXPHOS genes. We found that substitutions in the positively selected codons have structural and functional impacts on the encoded proteins. Our results are concordantly suggesting that adaptations have strongly affected the evolution of mtDNA of hare species with potential effects on the protein function. Environmental/climatic changes appear to be a major trigger of this adaptation, whereas trans-specific introgressive hybridization seems to play no major role for the occurrence of protein variants.


Subject(s)
Hares , Animals , China , DNA, Mitochondrial/genetics , Genes, Mitochondrial , Hares/genetics , Phylogeny
3.
Sci Rep ; 8(1): 11514, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065344

ABSTRACT

In natural populations, allelic diversity of the major histocompatibility complex (MHC) is commonly interpreted as resulting from positive selection in varying spatiotemporal pathogenic landscapes. Composite pathogenic landscape data are, however, rarely available. We studied the spatial distribution of allelic diversity at two MHC class II loci (DQA, DQB) in hares, Lepus capensis, along a steep ecological gradient in North Africa and tested the role of climatic parameters for the spatial distribution of DQA and DQB proteins. Climatic parameters were considered to reflect to some extent pathogenic landscape variation. We investigated historical and contemporary forces that have shaped the variability at both genes, and tested for differential selective pressure across the ecological gradient by comparing allelic variation at MHC and neutral loci. We found positive selection on both MHC loci and significantly decreasing diversity from North to South Tunisia. Our multinomial linear models revealed significant effects of geographical positions that were correlated with mean annual temperature and precipitation on the occurrence of protein variants, but no effects of co-occurring DQA or DQB proteins, respectively. Diversifying selection, recombination, adaptation to local pathogenic landscapes (supposedly reflected by climate parameters) and neutral demographic processes have shaped the observed MHC diversity and differentiation patterns.


Subject(s)
Genes, MHC Class II/genetics , Hares/genetics , Hares/immunology , Africa, Northern , Alleles , Animals , Climate , Ecology , Ecosystem , Evolution, Molecular , Gene Frequency/genetics , Genetic Variation/genetics , Geography , Hares/metabolism , Microsatellite Repeats/genetics , Phylogeny , Selection, Genetic/genetics , Sequence Alignment/methods , Tunisia
4.
C R Biol ; 341(6): 315-324, 2018.
Article in English | MEDLINE | ID: mdl-30032779

ABSTRACT

Toll-like receptors (TLRs) are a major group of proteins that recognize molecular components of infectious agents, known as pathogen associated molecular patterns (PAMPs). The structure of these genes is similar and characterized by the presence of an ectodomain, a signal transmembrane segment and a highly conserved cytoplasmic domain. The latter domain is homologous to the human interleukin-1 receptor (IL1R) and human IL-18 receptor (IL-18R) and designated TIR domain. The latter domain of the TLR genes was suggested to be very conservative and its evolution is driven by purifying selection. Variability and evolution of the TIR sequences of TLR2 gene were studied in three hare populations from Tunisia with different ecological characteristics (NT-North Tunisia with Mediterranean, CT-Central Tunisia with semi-arid, and ST-South Tunisia with arid climate). Sequencing of a 372bp fragment of TIR2 revealed 25 alleles among 110 hares. Twenty variable nucleotide positions were detected, of which 7 were non-synonymous. The highest variability was observed in CT, with 16 polymorphic positions. In ST, only 4 polymorphic nucleotide positions were detected with all diversity values lower than those recorded for the other two populations. By using several approaches, no positive selection was detected. However, evidence of purifying selection was found at two positions. The logistic models of the most common TIR2 protein variant that we run to examine whether its occurrence was affected by climatic variation independent of the geographic sample location suggested only a longitudinal effect. Finally, the mapping of the non-synonymous mutations to the inferred tertiary protein structure showed that they were all localized in the different loop regions. Among all non-synonymous substitutions, three were suggested to be deleterious as evidenced by PROVEAN analysis. The observed patterns of variability characterized by low genetic diversity in ST might suggest that the TIR region was more affected, than other markers, by genetic drift or/and that these patterns were shaped by different selective pressures under different ecological conditions. Notably, this low diversity was not detected by other (putatively neutral) microsatellite markers analysed in the course of other studies. But low diversity was also found for two MHC class II adaptive immune genes. As expected from functionally important regions, the evolution of the TIR2 domain is mainly driven by purifying selection. However, the occurrence of deleterious non-synonymous substitutions might highlight the flexible evolution of the TIR genes and/or their interactions with other proteins.


Subject(s)
Genetic Variation , Toll-Like Receptor 2/genetics , Alleles , Animals , Evolution, Molecular , Hares , Humans , Microsatellite Repeats , Phylogeny , Protein Structure, Tertiary , Selection, Genetic , Tunisia
5.
J Biol Res (Thessalon) ; 24: 13, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29299440

ABSTRACT

BACKGROUND: Mitochondria are fundamental organelles responsible for cellular metabolism and energy production in eukaryotes via the oxidative phosphorylation pathway. Mitochondrial DNA is often used in population and species studies with the assumption of neutral evolution. However, evidence of positive selection in mitochondrial coding genes of various animal species has accumulated suggesting that amino acid changes in mtDNA might be adaptive. The functional and physiological implications of the inferred positively selected sites are usually unknown and are only evaluated based on available structural and functional models. Such studies are absent in unicellular organisms that show several crucial differences to the electron transport chain of animal mitochondria. In the present study, we explored Eimeria mitogenomes for positive selection. We also tested for association between mtDNA polymorphism and environmental variation (i.e. host species), parasite life cycle (i.e. sporulation period), and efficient host cell invasion (i.e. pathogenicity, prepatent period). FINDINGS: We used site- and branch-site tests to estimate the extent of purifying and positive selection at each site and each lineage of several Eimeria parasite mitogenomes retrieved from GenBank. We founded sixteen codons in the three mtDNA-encoded proteins to be under positive selection compared to a strong purifying selection. Variation in the ratios of non-synonymous to synonymous changes of the studied parasites was associated with their different host species (F = 13.748; p < 0.001), whereas pathogenicity levels were associated with both synonymous and non-synonymous changes. This association was also confirmed by the multiple regression analysis. CONCLUSIONS: Our results suggest that host species and pathogenicity are important factors that might shape mitochondrial variation in Eimeria parasites. This supports the important role of mtDNA variations in the evolution and adaptation of these parasites.

6.
Genetica ; 144(5): 497-512, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27485731

ABSTRACT

North African hares are currently included in cape hares, Lepus capensis sensu lato, a taxon that may be considered a superspecies or a complex of closely related species. The existing molecular data, however, are not unequivocal, with mtDNA control region sequences suggesting a separate species status and nuclear loci (allozymes, microsatellites) revealing conspecificity of L. capensis and L. europaeus. Here, we study sequence variation in the intron 6 (468 bp) of the transferrin nuclear gene, of 105 hares with different coat colour from different regions in Tunisia with respect to genetic diversity and differentiation, as well as their phylogenetic status. Forty-six haplotypes (alleles) were revealed and compared phylogenetically to all available TF haplotypes of various Lepus species retrieved from GenBank. Maximum Likelihood, neighbor joining and median joining network analyses concordantly grouped all currently obtained haplotypes together with haplotypes belonging to six different Chinese hare species and the African scrub hare L. saxatilis. Moreover, two Tunisian haploypes were shared with L. capensis, L timidus, L. sinensis, L. yarkandensis, and L. hainanus from China. These results indicated the evolutionary complexity of the genus Lepus with the mixing of nuclear gene haplotypes resulting from introgressive hybridization or/and shared ancestral polymorphism. We report the presence of shared ancestral polymorphism between North African and Chinese hares. This has not been detected earlier in the mtDNA sequences of the same individuals. Genetic diversity of the TF sequences from the Tunisian populations was relatively high compared to other hare populations. However, genetic differentiation and gene flow analyses (AMOVA, FST, Nm) indicated little divergence with the absence of geographically meaningful phylogroups and lack of clustering with coat colour types. These results confirm the presence of a single hare species in Tunisia, but a sound inference on its phylogenetic position would require additional nuclear markers and numerous geographically meaningful samples from Africa and Eurasia.


Subject(s)
Genetic Variation , Hares/classification , Hares/genetics , Phylogeny , Transferrin/genetics , Animals , Gene Frequency , Genetics, Population , Geography , Haplotypes , Polymorphism, Genetic , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...